
Pergamon 

I,,,. .I. Hem Man Trunsfir. Vol. 37. No. 6. pp. 1029-1044. 1994 

Copynghl 0’ 1994 Elscv~rr Scxnce Ltd 
Printed in Great Britain. All rights reserved 

0017-9310i94$600+000 

Slip and no-slip temperature boundary conditions 
at the interface of porous, plain media: 

convection 

M. SAHRAOUI and M. KAVIANY 

Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, 
Ann Arbor. MI 48109. U.S.A. 

(Receiced 1 June 1992 and in.final,form 9 March 1993) 

Abstract-Near the interface of porous plain media, convective heat transfer may be noticeably affected 
by the nonuniformity of the phase distributions. The boundary effects are modeled by using interfacial slip 
or no-slip temperature boundary conditions. The latter uses a variable transverse total diffusivity giving a 
continuous variation of the temperature near and across the interface. The former uses a constant transverse 
total diffusivity which requires a temperature slip cross the interface (in order to obtain accurate heat flux 
calculations). In this study these boundary conditions are examined by the direct simulation of the 
momentum and energy equations for a model porous medium made of two-dimensional periodic arrange- 
ments of cylinders. The slip coefficient is found to depend on the bulk Peclet number Pe,. the ratio of solid 
to fluid conductivity k,/k,, and the gap size /I. For the no-slip boundary condition, the magnitude and the 
distribution of D, (~>)/a, also depend on Pe,, k,/k,, and h. For a solid bounding surface, and when k,/kr > I. 
the effective transverse conductivity k,,/k, dominates over the hydrodynamic dispersion, and therefore, 
the accurate description of the variation of k,, (r)/ki becomes critical. For a fluid bounding medium, the 
results show that D, (J) is nonuniform on both sides of the interface. The nonuniformity of DL(y) in the 
fluid medium is due to the local two dimensionality of the flow. The total diffusivity tensor D in the bulk 
of a two-dimensional periodic structure is also examined. The effects of the Reynolds number, Prandtl 
number, particle shape, particle arrangement. and flow direction, on the bulk value of D are examined. It 
is found that for oblique flows, the ensemble-averaged longitudinal total diffusivity D, /ccr, over the tilt 

angle, approaches a Pe, relation instead of a Pe: relation expected for periodic structures. 

‘I. INTRODUCTION 

THE SIMULTANEOUS presence of pore-level temperature 
and velocity gradients and the application of the local 
volume averaging technique results in the inclusion of 
the pore-level convection contribution as an enhanced 
diffusion (or dispersion). This enhanced diffusion is 
characterized by the total thermal diffusivity tensor 
given by 

(1) 

where K, is the effective conductivity tensor and Dd is 
the hydrodynamic dispersion tensor. The hydro- 
dynamic dispersion is similar to the thermal eddy 
diffusivity in turbulence and is a direct result of the 
transport occurring at length scales smaller than the 
selected local representative elementary volume used 

in the averaging. As with the eddy diffusivity in plain 
media, the hydrodynamic dispersion in porous media 
is also anisotropic because of its dependence on the 
Darcean flow direction (flow anisotropy) and the 
presence of anisotropy in the solid phase distribution 
(structural anisotropy). Near the bounding surfaces 
of porous media, both the solid phase and the pore- 
level velocity distributions are different than those 
in the bulk, and therefore, further snisotropy and 

nonuniformity are found in D. This nonuniformity 

is treated by using the no-slip or the slip boundary 
conditions. In the no-slip boundary condition a vari- 
able D,(y) is used to model the nonuniformity near 
the interface and gives a continuous temperature dis- 
tribution. In the slip boundary condition, a uniform 
D, is used which requires a slip in the interfacial 
temperature for the accurate prediction of the heat 
flux across the interface. Below, we discuss these 
boundary conditions and the available results for the 
bulk (far from the interface) value of D. 

1.1. No-slip boundary condition 

The energy equation for a unidirectional steady- 
state fluid flow parallel and heat flow perpendicular 
to the interface, is given by 

In the porous medium and far from the interface, 
D,(y) becomes the bulk transverse dispersion co- 
efficient. In the fluid bounding medium and far from 
the interface D,(y) is equal to c(r. For a solid bound- 
ing medium, the hydrodynamic part of D,(y), i.e. 
D:(y), vanishes near the boundary due to the no- 
slip velocity boundary condition and D,(y) is solely 
due to conduction. 
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NOMENCLATURE 

i = 1, 2, , constants 
solid-fluid interfacial area [m’] 

closure vector functions [m] 
specific heat capacity [J kg ’ K ‘1 
cylinder diameter [m] 
hydrodynamic dispersion tensor [m s ‘1 
total diffusivity tensor [m s ‘1 
transverse total diffusivity [m s ‘1 
longitudinal total diffusivity [m s ‘1 
width of plain medium [m] 
effective conductivity tensor 
[W m ’ K ‘1 
conductivity [Wm ’ K ‘1 

cell dimension [m] 
spatial periodicity vector [m] 
unit normal vector outward from fluid 
phase 
unit normal vector outward from solid 
phase 

PC, Peclet number, u,,//z, 

PCJ,, Peclet number based on the flow along 
.u-principal axis, (u)v//r, 

P pressure [N m ‘1 
PI Prandtl number. r/c(, 
I radial coordinate [m] 
R radius of circular cylinder [m] 

Re, Reynolds number, U,,/IV 
T local temperature [K] 
T’ deviation temperature [K] 

temperature boundary condition at J’ = h 

:;,.,, 1 ocal area-averaged temperature in 

.v-direction [K] 
(T), local volume-averaged temperature 

Kl 
(T)\, local fluid-phase volume-averaged 

temperature. I,, Tf d V [K] 

U velocity vector [m s ‘1 

U’ deviation velocity vector, 
u-(u):. [m s ‘1 

11 velocity in -\--direction [m s ‘1 

l/l, Darccan velocity [m 5 ‘1 

I’ velocity in j,-direction [m s ‘1 

t’ local representative elementary volume 

[ I 
m’ 

c, local representative elementary 
fluid-phase volume [m’] 

cl local rcpresentativc elementary 
solid-phase volume [m’] 

x, J Cartesian coordinates [ml. 

Greek symbols 
x thermal diffusivity [m’s ‘1 

:T 
tempcraturc slip coefficient 
imposed temperature difference [K] 

%? porosity 

0 tangential coordinate 

I’ kinematic viscosity [m’s] 

I’ density [kg m ‘1. 

Subscript 
A Area 

1 fluid 
max maximum 

t 
solid 
volume 

+ plain medium side 
- porous medium side 

Superscripts 
I fluid 
S solid 

deviation 

+ plain medium side 
_ porous medium side. 

Others 

( )’ fluid-phase volume averaged 

( ).I area averaged 

( )\, area averaged in s-direction 

( )\ volume averaged. 

Several investigators have evaluated the dis- bulk Dd which depend explicitly on porosity. These 

tribution of D L (y) near the interface. Cheng and Vort- 
meyer [I] examine the nonuniformity of the hydro- 
dynamic transverse dispersion coefficient near the 
bounding surface by using a variable local porosity 
along with the mixing length theory of turbulence. A 
similar approach is used by Cheng and Hsu [2]. Tobis 
and Zilkowski [3] model the nonuniformity of DdL 
near the interface by using a nonuniform effective 
viscosity similar to the eddy viscosity in turbulence. 
By using the analogy between heat and momentum 
transfer they relate the viscosity to the hydrodynamic 
dispersion. Another approach is used by Hsu 
and Cheng [4] where they find expressions for the 

expressions are used along with a variable porosity in 
order to model the nonuniformity of D:(y) and more 
details about the models mentioned above can be 
found in refs. [5, 61. 

I .2. Slip condition 
The difficulty with the prescription of the non- 

uniformity of D, (J) at the interface is bypassed by 
the extrapolation of the temperature away from the 
interface. The extrapolation of the temperature gives 
a temperature slip similar to the velocity slip suggested 
by Beavers and Joseph [7]. However, here the gradient 
in the porous medium side and far from the interface 
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is used in order to determine the temperature slip. In 
this boundary condition, the temperature gradient in 
the porous medium and perpendicular to the interface 

is given by 

d(T), 
d.i 

= “i’(T- - T+), (3) 
I - 0 

where ur is the dimensionless slip coeficient, T is the 
porous medium inte~f&iul temperature, T+ is the plain 

medium interfhcicd temperuture, and i is a pore-ltwl 

dimensionless length scale. Note that in convection, 
two boundary layers are formed around the porous 
plain interface, one on each side. Therefore, both T+ 

and T- are different than the actual interface tem- 

perature. For the bed of cylinders used in this study, 
we expect the length scale i to be the order of the unit- 
cell length. Here it is taken to be unity (i.e. rT is 
determined assuming a boundary-layer thickness 
equal to one unit cell size). This boundary condition 
is used along with the continuity of the heat flux, i.e. 

Yagi and Kunii [S] performed experiments for an 

annular packed bed of spheres and used the slip 
boundary condition with a uniform D, (y) to find the 
heat flux at the boundary. Their results show that the 
slip coefficient behaves as a linear function of the 
particle Peclet number. Ofuchi and Kunii [9] used the 

same boundary condition but D,(y) was modeled 
by a step variation in order to account for the local 
porosity variation near the interface. Their step 
change is found by using a constant local porosity 

for the region near the boundary (which is different 
than the bulk value) and by using their empirical 
n _ = D, (E) relation. 

I .3. Bulk dispersion 

The determination of the bulk thermal diffusivity 
tensor has been the subject of many studies over the 

past five decades. The cross-sectional averaging of the 
molecular conduction<onvection heat transfer for 
fully developed laminar flow in a tube by Taylor [IO] 
results in the longitudinal (along the flow) hydro- 

dynamic dispersion coefficient given by 

D;l _. pe =B?! Ped 

zr 48 ’ d %I ’ (5) 

where (u)v is the velocity. For turbulent flow, Taylor 
[I 1] uses an isotropic thermal eddy conductivity and 
he obtains a Pe relation. The Pe’ relation for laminar 
flows has also been found for ordered (simple cubic 
arrangement of spherical particles) porous media by 
Koch et al. [12]. As we will show, this is only true for 
ordered structures where the Auid particle path is not 
noticeably tortuous. 

The theory of dispersion in periodic structures has 
been formulated by Brenner [13] by applying the 
method of moments. Koch et al. use this method 

to find closed-form solutions for the hydrodynamic 

dispersion tensor for orderly arranged beds of spheres 
and cylinders (two-dimensional). Their prediction of 

the longitudinal hydrodynamic dispersion coefficient 
gives a Pe* relationship similar to that for tubes. Koch 
and Brady [14] also study the dispersion in random 
porous media using the ensemble averaging method 
and an asymptotic analysis for high porosities. They 
identify some of the physical mechanisms affecting 
dispersion. One of the mechanisms is the hold-up 
dispersion that occurs when a closed streamline 
region is present and the solute could only escape by 

molecular diffusion. This phenomenon has a Pe’ 
contribution to the longitudinal hydrodynamic dis- 

persion. Another mechanism which has a Pe In (Pe) 

contribution, results from the presence of a boundary 
layer on the particles. The mechanism is associated 

with the stochastic nature of the velocity field in 
random porous media and contributes with a simple 
Pe relation to Dd. 

Carbonell and Whitaker [ 15, 161 derive the volume 

averaged energy equation using the volume averaging 

theory. Eidsath et ul. [I71 use this theory to evaluate 
D for a bed of non-conducting circular cylinders and 
their results nearly predict the trend shown by the 
experimental results of Gunn and Pryce [I 81. They 
find that at high Peclet numbers D , /r, follows a Pe’ ’ 
relation. Edwards et al. [I91 solve the same problem 
and examine the effects of porosity, particle arrange- 
ment, Prandtl number, and Reynolds number on the 
hydrodynamic dispersion tensor. 

Here, direct numerical simulation of the flow and 

temperature fields and the application of the local 
volume-averaging technique are used to examine the 

effect of the pore-level flow regime (creeping and 
steady inertial regimes only) on the bulk D. We also 
evaluate its nonuniformity and anisotropy near the 
bounding surfaces of an ordered porous medium (a 
two-dimensional porous medium made of cylindrical 

particles). In our previous communication the hydro- 
dynamics [20] and conduction heat transfer [21], near 
the interface and in the bulk of such two-dimensional 
structures have been examined and reported. 

2. LOCAL VOLUME AVERAGING 

Here, the development of the volume-averaged 
energy equation in porous media is reviewed based on 

the development of Carbonell and Whitaker [l6]. The 
hydrodynamic dispersion tensor is obtained in terms 
of the local variation of velocity and temperature. The 
local energy equation in the fluid and the solid is given 

by 

c:T, 
t +V*uT, = V*%,.VT, 

and 

8T, 
Xm = V . x,VT,. 

The boundary conditions on A,., 

(6) 



n,;k,VT, = n,;k,VT, and T, = T,. (7) 

The volume averaged energy equation is obtained by 
averaging the local equations (6) and combining both 
of them using the assumption of the local thermal 

equilibrium. The obtained averaged equation is 

?( I-}, 
[E(p”‘,Jr-+(l -E)(l~(.p)\l ir +(l”‘p), <u>v -V(T), 

= V’ [EkI.f(l -c)k,]V(T), 
i 

k,-k, 

+ --v .- (8) 

where the volume average { T)v is given by 

(Th = ; s TdV= (I-c)(T);,+I:(T);~ (9) 
1 

and (u), is given by 

(II), = ; (10) 

and T;. and u’ represent the deviations about the 
intrinsic phase average and they are given by 

T; = T--<T), and u; = u--(u){.. (Il? 

Note that (T), = (T)i = {T);. using the local ther- 
mal equilibrium assumption. The last term in equation 
(8) represents the hydrodynamic dispersion caused by 
the interaction of the velocity and the temperature 
fields. A closure constitutive equation is introduced 
to relate the temperature deviation T’ to the gradient 
of the averaged temperature using a first order 
approximation of Tabout (T),.. The conditions are 

T;. = b,*V(T), and T: = b;V(T),. (12) 

Then, the averaged energy equation (8) becomes 

= V*(D.V(T),), (13) 

where D is the total diffusivity tensor given by cqua- 

tion (I). Using the b vector. K, in equation (I) is given 

by 

kr-k, 
K, = [ekI.+(l -r:)k,]l+ -j/ 

i 
n,,br dA (14) 

‘1, 

and the hydrodynamic dispersion tensor D” in equa- 
tion (I ) is given by 

The energy equation in the cylindrical grid is given by 

Dd = 
-1 

Y s 
u’b, dl’. (15) 

‘t 

The b vector in the solid and in the ffuid is found by 
solving 

Note that equations (20) and (21) are given for the 
Buid phase and they also apply for the solid phase 
where U, = ~1,~ = 0. 

u’+u-Vbf = ct,V’bf and V’b, = 0. (16) At the boundary of the cell the periodic boundary 

fi,n,;Vb, = k,n,;Vb,+n,,(k,-ii:) 

an d 

b, = b,. (17) 

At the boundaries of the unit celi the periodic bound- 
ary conditions arc used. 

3. SOLUTION METHOlY 

The total diffusivity tensor is evaluated for peri- 
odic arrangements of circular or square cylindrical 

particles. We solve the n~ornentum. energy, and b 

equations for steady state, incompressible, and con- 
stant property flows. The equations are solved using 

the finite-difference approximations for a unit cell 
such as the one depicted in Fig. I (a) using the finite- 
volume method developed by Patankar [223. The cir- 
cular cylinder inside the unit cell cannot be mapped 
accurately using a Cartesian grid. Therefore, we USC a 
cylindrical grid around the cylinder which would map 
the surface of the cylinder exactly. Away from the 
cylinder surface and near the boundaries of the square 
cclt we use a Cartesian grid. The momentum equation 
in the Cartesian and cylindrical coordinates and more 

details about the numerical method can be found in 
refs. [5, 201. 

For the b equations, each component is solved for 
as a scalar. The equation for h, is given by 

The equation for h, is similar to that of h, except u‘ is 
replaced by I”. The b vector is non-dimensionalized 

using 1. For the interface problems. the energy equa- 
tion is solved which is given by 

119) 

The equation for /I, in the cylindrical coordinates is 

given by 



u (0, y) = u (1. Y) 
v(O,y)=v(L,y) ysv 
P(O.Y)=P(LY)+AP c 
T O,y)= T(ky)+AT 
b O,y)=b(Ly) I 

b (x.,4/2) = b (x. d/2) 
T (x.112) = T (x. 412) 
u (x&2) H u (x.-L/2),v = 0 

l- P 
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T (x, -112) = T (x. 112) 
b(x,d/2)=b(x.L/2) 

(4 
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FIG. I. (a) The unit cell and the periodic boundary conditions for the in-line arrangement of circular 
cylinders. (b) The boundary conditions for the interface model. (c) Comparison of the numerical results 
for D ,/txr of this study (E = 0.38, Re, = 0.01, and k,/k, = 0) and the numerical results of Edwards et ul., 

Eidsath et al. and Quintard et ul. and the experimental results of Gunn and Pryce. 

conditions, as depicted in Fig. l(a), are used for all 
the variables. When oblique flow is examined, the 
periodic boundary condition in the y-direction is simi- 
lar to that applied in the x-direction in Fig. 1 (a). The 
magnitude of flow in the y-direction is controlled by 
the pressure gradient imposed in that direction. At the 
surface of the cylinder, we use the no-slip condition 
for the velocity. For the b, and b,., the boundary 
conditions are obtained from equation (17) and are 
given by 

and 

%jl=t%j,+ (:-l)sin(U). (22) 

For the temperature equation, the harmonic mean is 
used and the boundary condition at the surface of the 
cylinder does not need any special treatment. When 
the energy equation is used to solve for the tem- 
perature distribution for the interface model, the 
boundary conditions given in Fig. 1 (b) are used in the 
y-direction. In the x-direction, we use the periodic 
boundary condition given by 



7jO.j~) = 71 I. I.). (2.3) 

The results are validated by comparing them to 
previous cxperimcntal and numerical results as shown 
in Fig. 1 (c), The numerical results predict lower n ,;I, 
than the experiments of Gunn and Prycc for the simple 
cubic packing of spherical particles (X = 0.48). This 
discrepancy is due to the diffcrcncc in How and tcm- 
perature fields for the in-line arrangement of circular 

cylinders and that of simple cubic arrangement of 
spherical particles. When we compare our numerical 
results to those of Eidsath et (11. WC tind very good 
agreement and in Fig. 1 (c) we present the two results 
in terms of only one curve (present results) in order 
to reduce the complexity of the graph. Figure 1 (c) also 
shows that the present numerical results are in very 
good agreement with those of Quintard [23] and 
Edwards 1’1 (I/. for PC, < IO’. For higher Peclet 

numbers. the deviation between the various numerical 

results increases bccausc of the inaccuracies that are 
present in the numerical methods. Note that for the 

results of Edwards et (I/.. we modified their Peclet 
number definition in order to obtain matching results. 
They claim that their results arc prcsentcd in terms of 
the fluid phase average velocity but we believe that 
they arc presented in terms of the average velocity 

over both phases. 
The solid phase nonuniformity near the porous 

plain media interface is examined using the model 
depicted in Fig. l(b). The local solution for the tem- 
perature is found using equations (19) and (21) with 
the boundary conditions given in Fig. I(b). The slip 
and no-slip boundary conditions at the intcrfacc of 
porous plain media are examined after averaging is 
performed using a variable averaging volume. Away 
from the interface, where the solid phase distribution 

is uniform, an averaging volume having a unit-cell size 
is used. This averaging volume is defined by 

At the interface and in the plain medium, the aver- 
aging volume is zero and an area average of the local 

temperature is taken. The area-averaged temperature 
(averaged along the x-direction) is defined by 

s 0 \ 

(7-),~(.U,?‘) = T(X + .\a’. .v) d-r’. (25) 
0 ( 

For the no-slip model a smoothly varying and well 
behaved averaged solution is expected. This is found 
by applying a variable averaging volume near the 
interface. This variable averaging volume allows the 
transition between the area average at the interface 
(i.e. zero averaging volume) to a single unit-cell size 
averaging volume one half cell size away from the 
interface. Therefore, the size of this averaging volume 
is taken as -213 for -l/2 <J ,< 0 and it becomes 

- 1 ‘(’ “< ( T),(.,-. J.) = 3,’ 
-. !.I 

~, /) i T(.\-+.Y’.f) d.\-’ d!,’ 

Further discussion about the use of the variable aver- 

aging can be found in ref. [20]. 
For conduction, the distributions ofb, and h, within 

the unit cell are similar to that for T’, and therefore, 

b or Tcan be used to determine K,. For high Peclet 
numbers, using the T’ field becomes difficult because 
of the large temperature gradient near the flow exit 
boundary of the cell, and therefore, b equations must 
bc used. To demonstrate the distributions of h, and 
h,. examples are given in Fig. 2. The results are for 
various flow and bed parameters. In Fig. 2(a) the 
effect of the Peclet number on the distribution of h, is 

shown for the in-line arrangement of cylinders and 
for 7% = 1 and IO’. As the Peclet number increases 
both the distribution and the magnitude of h, change 
significantly. The effect of k,/k( is shown in Fig. 2(b) 
for Pe, = I and IO’and k,,!kr = IO’. For 7’~ = I. the 

effect ofconvection is negligible and the h, distribution 
is similar to that for conduction. For PP, = IO’. the h, 
distribution changes significantly and becomes nearly 
similar to that of k,/k, = I shown in Fig. 2(a). The 
effect of the particle arrangement on the distribution 
of h, is shown in Fig. 2(c). The results show a sig- 
nificant difference between the staggered and the in- 
line arrangements of cylinders, especially at large 
Pcclet numbers. As it will be shown below, this diffcr- 
cnce causes L$lr,- for the two arrangements to be 
different by orders of magnitude. In the transverse 

direction, the h, field does not show a strong depen- 
dency on the Peclet number as shown in Fig. 2(d) fat 
PC, = 1 and IO’. 

4. BULK DISPERSION TENSOR 

In this section, we examine D for the bulk porous 

medium and for the different structure and flow par- 
ametcrs. The structure parameters used are k,/k, and 
I: and the flow parameters are PC,, Re,, and the flow 
direction. We first consider the longitudinal total 
diffusivity D,, and the transverse total diffusivity 7C_. 

4.1. Longitudinal component 
The total dispersion tensor, away from the inter- 

fact, is examined for a bed of circular and square 
cylinders. There are two mechanisms that contribute 
to the hydrodynamic dispersion. The first mechanism 
is due to the velocity gradient in the pore caused by 
the no velocity slip occurring at the particle surface 
and also due to the tortuous fluid particle path caused 
by the solid particle arrangement. The second mech- 
anism is due to the presence of a flow recirculation 
region, i.e. presence of closed streamlines. The heat 
transfer out of this region occurs only by molecular 
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FIG. 2. (a) Contours of constant h,/jb,__l for the in-line arrangement of cylinders and for Pe, = 1 and 102 
(E = 0.5, k,/k, = 1. and Re, = 0.01). (b) Effect ofk,/k, on h,/(b,J for the in-line arrangement of cylinders, 
with k,/kr = 100 and for Pe, = 1 and IO’ (s = 0.5 and Re, = 0.01). (c) Effect of Peclet number on h,i 
ih,,,J for the staggered arrangement ofcylinders and for Fe, = 1 and IO2 (i: = 0.5, k,,‘kr = 1. and Rq = 0.01). 

(d) Contours ofconstant h,/lhvm,,_l for the in-line arrangement ofcyiinders and for Pq = I. and IO’ (C = 0.5. 
k,/kf = I, and Re, = 0.01). 

diffusion. This dispersion mechanism is especially 
important for some periodic structures. where vortices 
can exist between adjacent cylinders. 

To compare these different mechanisms, we have 
computed the recirculation region contribution and 
that from the remaining region separately for an 
ar~ngement of square cylindrical particles. The 
results show that for F = 0.5 and Pe, = IO’, the con- 
tribution of the recirculation region is about 90% of 
the total. 

4.1. I. Porosity. Since the recirculation region 
covers a larger portion of the pore volume and the 
velocity gradients become more pronounced as the 
spacing between the particles decreases, Dd is expected 
to increase with a decrease in porosity. The increase 
in D~/u, with decrease in porosity, for in-line arrange- 
ment of cylinders, is shown in Fig. 3(a) and further 
results for @/a,. are given in ref. [24]. Note that the 

variation in D,,/Q = 1 +eD~i~, with respect to Pq 

is shown in Fig. 3(a). These results show that the 
high Pe, asymptotic behavior is independent of the 
porosity, i.e, the results for all porosities show that 
D,,a, is proportional to Per, for high Pe,. The results 
depicted in Fig. 3(a) also show that the change in 
LrlI/nf, caused by the porosity variation, is not very 
significant compared to the variation with respect to 
Pe,. For example, the difference in Df/or, between 
E = 0.5 and 0.95 is only about 40%. As will be discussed 
below, the particle arrangement or the flow direction 
can change U;f/n, by orders of magnitude. 

4.1.2. Reynolds and Prandtl numbers. So far, the 
Peclet number Pe, = Re, Pr is varied by changing the 
Prandtl number while keeping the Reynolds number 
the same. In order to evaluate the effect of the flow 
inertia on D , /q, we now vary the Reynolds number 
while keeping the Prandtl number the same. The 
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FIG. 3. (a) Effect of the porosity on variation of D,,jn, for in-line arrangement of circular cylinders. 
(b) Variation of D /cc, as a function of the Peclet number for constant Pr and constant Rr, for 
in-line arrangement of circular cylinders. (c) Comparison of the variation of D,, /r, with respect to Pr, for 

in-line arrangement of square and circular cylinders. 

results are shown in Fig, 3(b) for Pr, < IO’. Note that 
the Bow becomes unsteady for Re, 2 150, as discussed 
in ref. [20]. Also shown in Fig. 3(b) arc the results of 
varying Pr while keeping Re, the same. The results 
show that at high Peclet numbers the power a in the 
Pc;1 relation is the same for both variable Pr and 
Re,. However, due to the inertial effects, varying the 
Reynolds number results in a higher D , /ctf, The iner- 
tial effects on the flow field for in-line arrangement of 
circular cylinders are discussed in ref. [20]. For low 
Reynolds numbers, separation occurs away from the 
tip of the cylinder and the streamlines curve around 
&he cylinder. For higher Reynolds number, the flow 

separates before the tip of the cylinder making the flow 
field nearly rectilinear. This earlier flow separation 
causes an increase in the extent of the recirculation 
region and as the Reynolds number increases, D!/a, 
increases. 

4.1.3. Purtickslqx. The effect of the particle shape 
on D:/tl, is examined using circular and square cyl- 
inders. The results for square and circular cylinders 
are compared in Fig. 3(c). The results show that due 
to a larger recirculation region between the cylinders. 
#/a, for square cylinders, and at high I%,, is larger. 
For the square cylinders, the flow is partly rectihnear 
and can be compared to the Row between two parallel 
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plates. However, for the square cylinders D;f/a, is 
greatly affected by the recirculation, while for a 
straight channel the dispersion is only caused by the 
velocity gradient in the channel. A channel having the 
same size as the gap between the square cylinders will 
have a Di/a, which is lower by about 80%. 

The Reynolds number effect is also studied for the 
square cylinders, but the flow field does not change 
significantly with the Reynolds number (due to the 
absence of a curvature on the surface). Then, the 
results for Di/ar are nearly the same for the variable 
Reynolds and Prandtl number. 

4.1.4. Particle conductivity. The effect of solid to 
fluid conductivity ratio k,/k, on D,,/a, has been 

recently studied by Yuan et al. [25]. In their model, a 
thick wall capillary tube is used in order to evaluate 
this effect. They obtain the same Pe, dependency as 
that of Taylor (equation (5)). Moreover, they find 
that at high Peclet numbers, D,,/a, decreases with 
increasing k,/kf while at low Peclet numbers it 

increases. Our results show the same trend for the in- 
line arrangement of circular cylinders. The variations 
of D,,/a, with respect to k,/kf for Pe, = 1 and IO3 are 
shown in Figs. 4(a) and (b). For low Peclet number 
flows, i.e. Pe, < 10, D,,/af increases as shown in Fig. 
4(a). This is expected because for low Peclet numbers, 

the hydrodynamic effects are not very significant and 
the transport is diffusion controlled. In this regime, as 

shown in the discussion of conduction heat transfer 
in ref. [21], the effective conductivity initially increases 

with an increase in k,kf and then reaches an asymp- 
tote. As the Peclet number increases, convection 
dominates and the effect of k,/kr on D;,/af is noticeably 

different. The transition between the high and low 
Peclet number regimes occurs around Pe, = 10 as 
shown in ref. [24]. For higher Peclet numbers 

(Pe, > lo), Di/a, is enhanced by lowering k,/k,, as 
shown in Fig. 4(b), for Pe, = lo3 which is consistent 

with the results of Yuan et al. 
4.1.5. Particle arrangement. As the pore geometry 

changes, so does the flow field, and therefore, the 
dispersion tensor changes. Here, we study the effect 
of the particle arrangement on D,, /ar by examining the 
in-line and the staggered arrangements of particles. In 
the staggered arrangement, two adjacent columns of 
in-line cylinders are shifted with respect to each other 
by a distance of half a cell size. The results for D:/xf 
are shown in Fig. 4(c). At Pe, = lo3 and for the stag- 
gered arrangement, D;f/a, is lower by about two orders 
of magnitude for the same values of E, k,/k,, and Re,. 
This difference is attributed to two effects. First, for 
the staggered arrangement the recirculation region, 
that is present between the two adjacent particles for 
the in-line arrangement, is not present (as shown in 
ref. [ZO]) resulting in a lower D,,/a,. The second effect, 
which is more significant, is due to the interruptions 
made to the motion of fluid particles by the staggered 
solid particles. For the in-line arrangement, the vel- 
ocity distribution does not change significantly along 
the flow direction. For the staggered arrangement, the 

fluid particles follow a tortuous path and undergo 
periodic and substantial change in direction and mag- 
nitude of their velocity. This results in a lower value 
for D,,/ar compared with the in-line arrangement. The 
substantial change in the velocity of the fluid particles 
occurs also in the disordered porous media. From the 
results shown in Fig. 4(c) for high Pe,, the exponent 
a2 in Dx,/af = a, PerI is 1.26 for E = 0.5. This trend is 
also found in the experimental results of Gunn and 
Pryce [18] for the rhombohedral arrangement of 
spherical particles. In the existing literature these 
experimental results have not been compared to any 
predictions. This is because a Pe; relation had been 
expected for all periodic arrangements of particles. 

We show that a Pef relation is not found for any 
periodic structure. Table 1 gives the coefficients a, and 
a, in D,,/a, Pep’, for different E and for the staggered 
and the in-line arrangements of cylinders. The results 
show that as E increases a1 increases and approaches 

a value of 2, as expected for a periodic structure. Note 
that, D,,/af is significantly lower for the staggered than 
the in-line arrangement. 

4.1.6. Flow direction. So far, D,,/ar has only been 
examined for Darcean flows along the principal axes 

of the solid matrix (or bed). The off principal axes 
flows have been examined by Koch et al., for the in- 

line arrangement of circular cylinders. Their results 
show that with a slight deviation from the principal 
axes, instead of a monotonic increase of Di/a, with 
respect to Pe,, an asymptote is reached for high Peclet 
numbers (e.g. for Pe, 2 lo3 and a tilt angle of 0.2”). 
This trend is not found here, as shown in Fig. 4(d), 
where we present the variation of D;f/a, with respect 
to Pe,r (i.e. the Peclet number based on the flow along 

x-principal axis) for the in-line arrangement of cyl- 
inders. The results are presented for several tilt angles 
from 0” up to 89.4”. At high values of Pe,\, as the tilt 
angle increases, D,,/a, decreases. This is because the 
y-direction flow eliminates the recirculation region 
between the cylinders and creates more tortuous fluid 

particle paths. Note that a tilt in Darcean flow cor- 
responds to staggering of particles. Figure 4(d) also 

shows that at high Peclet numbers, D,,/ar approaches 
an asymptotic behavior of the form D , /ar = a, Pep?, 
The coefficients a, and a2 are computed for different 
tilt angles and are shown in Table 2. These results 
show that the exponent a, decreases drastically for 
small tilt angles and becomes nearly unity for 

(v)~/(u)~ = 0.05 to 0.1. As the tilt angle further 
increases, the exponent first increases, also seen in Fig. 
4(d), and then decreases again. From Table 2, we 
find that for (v)~/(u)~ = 0.9 and 1, D,,/a, is larger 
compared to the results for 0.7. This is because as the 
tilt angle changes the tortuosity and the magnitude of 
the velocity gradient change to enhance Dy/af. For 

<v>~/<u>~ = IO’, D ,/a, is larger compared to 
(v)~/(u)~ = 10. This is because the overall Peclet 
number, based on the total velocity, is about 10 times 
larger compared to that for (v)~/(u)~ = 10, while the 
tilt angles are not very different. 
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Table 1 
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FIG. 4. (a), (b) Effect of k,/kl on D,,/cq for in-line arrangement of circular cylinders (E = 0.5 and Re, = 0.01) 
for Pq = I and PP, = 10’. respectively. (c) Effect of the particle arrangement on D,,/cc, for variable PC, 
using in-line and staggered arrangements of circular cylinders. (d) Effect of the flow tilt on D./n, for in- 

line arrangement of circular cylinders. 

Effect of particle arrangement on the coefficients in 
u, fe;?, for k,/k, = 1.0 and Re, = 0.01. The results 

are for IO2 < Pe, < 10’ 

In-line Staggered 

c a2 01 u2 (II 

0.5 1.71 0.048 1.26 0.018 
0.6 1.68 0.049 1.37 0.013 
0.7 1.68 0044 1.43 0.011 
0.X 1.67 0.039 1.49 0.0080 
0.95 1.86 0.0076 1.54 0.0042 

- ~.~__~ ~. 

Table 2. Effect of flow direction on the coefficients in 
D,,/q = a, Pef~, for k,/k, = 1.0, Re, = 0.01, and E = 0.5. The 

results are for IO2 ,< Pe, 4 5 x IO” 

+hKuh 4 11 I <~~>vl~U>v a2 aI 
-.____ 

0 1.71 0.048 0.9 1.17 0.045 
0.01 1.25 0.44 I 1.17 0.049 
0.05 0.97 0.807 2 1.15 0.031 
0.1 0.97 0.403 4 1.13 0.024 
0.3 1.15 0.050 6 1.12 0.020 
0.5 1.30 0.010 10 1.10 0.018 
0.7 1.25 0.020 100 0.98 0.074 
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In order to simulate random porous media, we use 
the ensemble averaging of the flow direction (i.e. tilt 
angle) for the in-line arrangement of cylinders. We 
use a uniform probability distribution function for 
the flow direction distribution and take the ensemble 
average of Dil/uf, for the same Peclet number, using 
the results for the different tilt angles shown in Table 
2. Using these averaged values, we find that the com- 
puted coefficients a, and a2 are 0.062 and 1.17, respec- 
tively. This a2 is close to that found for (u),/(u), = 1, 
i.e. the average tilt angle, and it is also close to the 
experimental results for random arrangement of 
spheres (i.e. 1 6 a2 < 1.2). 

4.2. Transverse component 
The variables that most noticeably affect D”,/u, are : 

the Peclet number, the particle arrangement, and the 
flow direction. The numerical results show that for a 
given Pe,, D”,,& is independent of whether Pr or RE, 
is varied. Also, the porosity and the particle shape 
(i.e. square vs circular cylinders) do not affect Dd,/cr, 
(but the effective conductivity depends in these par- 
ameters for k,/k, # 1). 

4.2.1. Particle arrangement and Feciet number. In 
the staggered arrangement, the fluid particles follow 
a more tortuous path and this enhances Dd,/c+. This 
is evident in Fig. 5(a), where for the staggered arrange- 
ment D,/a, increases more rapidly with the Peclet 
number (as compared to in-line). For the nearly rec- 
tilinear flow fields of the in-line arrangement, the heat 
transfer in the transverse direction occurs only by 
diffusion. The only dispersion tnechanism of heat 
transfer in the transverse direction is the recirculation 
which provides some mixing of the flow. For the in- 
line arrangement and at high Pe, (Pei = IO’) the 
increase in D,/x, due to this mixing is about 35%. 
Note that Dd,/a, for the staggered arrangement is still 
small compared to D”,/cq, because there is no net flow 
in the y-direction. 

4.2.2. Flow direction. The effect of flow direction 
(with respect to the principal axes) on Dl/uf, for in- 
line arrangement of circular cylinders, is shown in Fig. 
5(b). For a given Pe,- and when the velocity in the 
transverse direction is small compared to that in the 
longitudinal direction (e.g. (a)v/(u), = O.l), D”,/a, 
is slightly larger than that for the zero tilt angle. As 
the velocity in the transverse direction increases, D:_/q 
is increased further. For <v>v/(u)v = 1 a substantial 
increase in the transverse hydrodynamic dispersion is 
found as expected, since the in-line arrangement is a 
staggered arrangement in the oblique direction of the 
flow. 

5. NEAR BOUNDING SURFACES 

Near the bounding surfaces of porous media, the 
distribution of the solid phase is significantly different 
than that in the bulk and this will influence D,, 
because both k, L and 0: depend on the solid phase 
distribution. As with the hydrodynamics and the con- 
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Fro. 5. (a) Effect of the particle arrangement on D,cc, for in- 
line and staggered arrangements of cylinders. (b) Effect of 
the flow tilt angle on D,/a, for the in-line arrangement of 

circular cylinders. 

duction heat transfer treatments (refs. [20, 21]), this 
nonuniformity in DI can be either allowed (i.e. no 
temperature slip is allowed) or masked by using an 
average and uniform D, (i.e. a slip in temperature is 
atlowed). Here we examine the effect of the bounding 
medium (i.e. solid or fluid) on the nonuniformity of 
D,/Q using the in-line arrangement of circular cyl- 
inders. We also examine the effects of Pe,, h, and k,/kr 
on the distribution and magnitude of Dl(y)/q. 

5.1. Temperature slip bo~ndory condit~un 
Since generally the variation of D, near the inter- 

face is not known, the empirical slip boundary con- 
dition is used. This boundary condition uses the extra- 
polation of the temperature fields away from the 
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interface and an empirical slip coeffcicnt I,. The slip 
boundary condition, based on the temperature gradient 
in the porous medium. is 

d(T), 
d.r 

= cc.,(T- -T+) (27) 
, - 0 

where the temperatures T+ and T at the interface 
are found by the extrapolation of the temperature 

fields away from the interface (i.e. where the boun- 
dary-layer effects are not present). The slip coefficient 

is calculated using 

(al 

3 

2 

A 
t- 
V 

1 

0 

(b> 

F 

The computed area- and volume-averaged local 
temperatures are shown in Fig. 6(a) for I+, = IO’. 
k,lk, = I, and t: = 0.48. The thermal boundary layer in 

the fluid bounding medium contributes to the tem- 

perature jump more significantly, compared to the 
boundary layer in the porous medium. The thermal 
boundary layer in the plain medium is due to the local 
two dimensionality of the flow. As Pr, increases, this 

boundary layer effect becomes more significant. Due 
to the mixing in the recirculation region between the 

cylinders, the flow in the bed side also contributes, but 
slightly, to the slip in temperature. The results for 
T ~ T’ and ti7 are given in Table 3, for different 

Peclet numbers and for a given gap size /I. The results 
show that as the Peclet number increases. the slip in 
the temperature becomes noticeable and can be larger 
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FIG. 6. (a) Distribution of the volume- and area-averaged temperature and the distribution of the 
extrapolated temperatures for the slip model (E = 0.48, Re, = 0.1, Pe, = 102. and k,/kf = 1). (b) Distribution 
of D, (y)/q near the solid bounding surface. (c) Effect of k,k, on D,(y)/ G(, near the solid bounding surface. 
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Table 3. Effect of the Peclet number on the slip coefficient 
(k-/k, = 1.0, Re, = 0.1, E = 0.48, and h = 2) 

pe, T--T+ % 

10 0.10 10.62 
IO2 0.72 1.55 
IO3 1.55 0.89 

than the temperature difference across one cell (in the 
bulk of the porous medium). Thus, if a uniform DJQ 
is used along with the no-slip condition, a significant 
error results in the computed interfacial heat flux. 
From the results on conduction heat transfer given in 
ref. [21], we expect this error to become larger as k,/kf 
becomes significantly different than unity. Note that 
for small Peclet numbers, i.e. Pe, < 10, conduction 

dominates the lateral heat transfer and the results for 
the slip conditions reported in ref. [21] apply. 

The effect of h on c+ is similar to that of Pe,. This 

is because as h increases, the velocity near the interface 
also increases. A more detailed discussion of the effect 
of the gap size on the local flow near the interface 
is given in ref. [20], where the effect of h on the 

hydrodynamic slip boundary condition is examined. 
The effect of h on the total temperature slip is dem- 
onstrated in Table 4 for E = 0.48 and Pe, = IO*. For 
h > 3, Tm - T’ reaches an asymptotic value near 
unity. This is because the penetration of the boundary 
effect in the plain medium reaches an asymptote for 
h > 3. The slip coefficient decreases with increasing 

h, because the temperature slip increases while the 
gradient of the volume-averaged temperature remains 

the same. 

5.2. No-slip boundary condition 
In the no-slip temperature boundary condition, a 

variable DL is used in order to model the non- 
uniformity near the interface. In this local simulation, 
D,(y) is computed using the volume-averaged trans- 
verse heat flow and the gradient of the volume-aver- 
aged temperature, i.e. 

D,(Y) d<T>v 
Ef dy 

- (Pe,uT- kg); (29) 

In the x-direction, periodic boundary conditions are 

used and no heat flow occurs in that direction. The 
transverse heat flow is the same as the volume-aver- 
aged heat flow, i.e. 

Table 4. Effect of the gap size on the slip coefficient 
(k,/k, = 1.0, Re, = 0.1, E = 0.48, and Pe, = 102) 

h T--T+ UT 

1 0.35 3.09 
2 0.72 1.55 
3 0.77 I .45 
4 0.82 1.37 

( PE,L.T-~~~=~-~)*.(Y=~). (30) 

Note that at the upper boundary we have I@, h) = 0. 
Then, from equations (29) and (30), DL(y)/uc is found 
using 

D,(Y) 
---= d(T)” ’ Mf 

dy (Y) 

(31) 

The variation of Dl(y)/af obtained using equation 
(31), is discussed below for solid and fluid bounding 
media. 

5.2.1. Dispersion near a solid bounding surface. We 
first examine Dl(y)/cq for a solid bounding surface 
and for k,/kf = 1. Since the gap size is part of the 
porous medium, h is chosen such that the last cylinder 

row also has a porority of 0.48 (i.e. corresponding to 
the simple cubic arrangement for spheres). Here the 
interface is taken as the bounding surface (instead of 
the surface tangent to the tip of the cylinders). The 
results for DL(y)/ar presented in Fig. 6(b), for 

Pe, = 10’ and k,/kf = 1, show that the boundary effect 
only penetrates half of a cell size into the porous 
medium (a similar trend is found in ref. [21] for con- 

duction heat transfer). Near the bounding surface, 
Dl(y)/af undergoes a peak and further away from the 
bounding surface, and before reaching the bulk value, 
D,(y)/q decreases to values lower than the bulk 
value. The decrease in D,.(y)/cc, is due to the recir- 
culation region between the cylinders. In the previous 
studies reviewed in ref. [5], Dt(y)/q is correlated 
using the local volume-averaged velocity (u)” and a 
mixing length and these cause the maximum in 
D:(y)/+ to be located further away from the surface 
compared to the location of the maximum of the local 
velocity. We use the computed (u)“(Y) and D,(y) to 
calculate the mixing length and we find a distribution 
which is different than the linear distribution sug- 
gested by Cheng and Vortmeyer [ 1] or the exponential 
decaying function suggested by Cheng and Hsu [2]. 
The distribution for the mixing length is given in ref. 

[241. 
The effect of k,/kf on Dl(y)/af is shown in Fig. 6(c) 

for k,/k, = 50 and Pe, = IO*. For small lY[ where the 
averaging volume does not enclose any solid, D,(y)/cc, 
is unity. As ly\ increases, the contribution of the 
transverse effective conductivity k,,(y)/k, becomes 
more significant compared to the hydrodynamic 
effect. The results presented in Fig. 6(c) for convec- 
tion and conduction are decomposed and the only 
significant difference between the two exists for 
y < -0.4. This significant dominance of conduction 
is also evident in the experiments of Yagi and Kunii 
[8]. Their results show that the temperature slip, for 
their random packed bed of spheres, is nearly the same 
for the stagnant and flowing air. Therefore, accurate 
modeling of k,,(y)/k, is more important in predicting 
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the heat transfer across the bounding surface. In the 
previous studies menrioned above and reviewed in ref. 
[5], k,,(~,)!k, is found using the local porosity and 
an effective conductivity-porosity correlation (for 
packed beds of spherical particles). Using the model 
for /i,, (~t)!k, used by Cheng and Hsu, in the one- 
dimensional energy equation, and comparing the 

results with the experimental results of Yagi and 
Kunii. we find that this local effective conductivity 
predicts a lower heat flux at the interface. Therefore. 

in the previous studies such as Cheng and Hsu, the 
empirical constants introduced in modeling D”, (~)/a, 
arc used mostly to correct the deficiency in predicting 

k,, (y)ik,. 
5.2.2. Dispersion new LI bounding channel jiow. 

For a porous medium bounded by a fluid bounding 
medium, the nonuniformity in D,(J,)I’~, is influenced 
by the flow in the channel. This is shown in Fig. 7(a). 
where for k,lk, = 1 the effect of the thermal boundary 
layer m the plain medium (which depends on J’r,) 
is rather dominant. Away from the interface. in the 
porous medium this Peclet number dependence is very 
weak. As the Peclet number vanishes. D /crf becomes 

uniform for k,ik, = 1. For k,/k,- # 1, the non- 
uniformity in D L (~)/a~ is present on both sides of the 
interface, as shown in Fig. 7(b). The nonuniformity 
in D , (~)/a,. in the porous medium depends mostly on 

the magnitude of k,/kf and again modeling of k,,/k, 
becomes more important than Dd,/x,. 

The effect of h on the variation of Dj jar is shown 
in Fig. 7(c), where an increase in h increases the local 
Peclet number near the interface and then given an 
increase in D I /cl,. For h > 3, as shown in Fig. 7(c), 
the nonuniformity in D, /z, extends to about one 
cell size in the plain medium. The penetration depth 
in the plain medium is independent of h, however, the 
magnitude of D,(y)/q increases with h. 

6. SUMMARY 

In order to determine the effect of the bed par- 

ameters (k,/k,. E, particle shape and arrangement, and 
Pr) and flow parameters (the dlrection of the Darcean 
flow with respect to the principal axes of the solid 
matrix and Rr,) on the dispersion tensor, both near 
the bounding surfaces and in the bulk, a numerical 
two-dimensional direct simulation is performed. The 
summary of the numerical results is given below. 

6.1. Disperston firr,from the inter/&v 
l A near PC; dependency of Dl,/af only occurs for 

the in-line arrangement of particles, where the flow 
field is similar to that for a variable diameter tube 
(even though recirculation regions are present 
between the particles) and when the fluid particles 
follow a nontortuous path. When the particles are 
arranged orderly but in a staggered manner, the fluid 
particle path becomes tortuous and this dependency 
approaches PC,. The absence of any recirculation in 
the staggered arrangement also contributes to this 

difference in behavior. This near Pr, dependency of 

/),/s(, has also been observed experimentally by others 
for rhombohcdral arrangement of spheres. 

l Eve1.y other parameter being the same. the mag- 
nitudc of D /a, is smaller for the staggered arrange- 
ment, while D, isc, is larger. 

l For the in-line arrangement, an increase in the 

flow tilt angle increases D, /a, and decreases D,,/x(. As 
the tilt angle changes the exponent of the Pe, depen- 
dency changes between 0.97 and I .7. The Pe, depen- 
dency for random porous media is obtained using 
an ensemble average over all tilt angles and a PC,’ ” 
dependency is obtained. This is similar to that found 
in the existing experiments with random arrangement 
of spheres. 

l The effect of kJk, on D varies with PC,, at low Pe, 
an increase in k,/k, results in an increase in D , , while 
for high Pe, this is reversed. 

l Lumping the effect of Pr and Re, in Pr, masks the 
hydrodynamic effects of D and this can be significant. 

6.2. Dispersion near the interjhce 
l Thermal boundary layers grow on both sides of 

the interface, with the plain medium boundary layer 
being more significant for k,/kr = 1. For k-/k, > 1, 
the boundary layer effects in the porous medium also 
become significant. 

l The total temperature slip increases with h, Pe,, 
and k,/kr. 

l Variation of D,/ar shows a peak in the plain 

medium near the interface and a strong dependence 
on /I and Pe,. 

l For a solid bounding surface, Ol(y)/af shows a 
strong dependency on k,/k,. The hydrodynamic effects 
are not significant, and therefore, the proper descrip- 
tion of the variation of k,Jk, becomes crucial. 

l For k,/kr = 1, modeling of D~(y)/ccf by using the 
local velocity and a simple monotonic distribution of 
the mixing length does not lead to accurate predic- 
tions. For k,/k, > 1, the hydrodynamic contribution 
is not signiticant and Ddi/ar can be neglected compared 
to k,,,‘k,. 

The porous, plain media interfacial conditions for 
velocity [20] and temperature (conduction [21] and 
convection here) show that the boundary layers 

extend only one half of a cell size in the porous 
medium. For a fluid bounding the porous medium, 
the velocity boundary in the plain medium is negli- 
gibly small but for the thermal boundary effect is very 
important and this increases with increase in the Peclet 
number Pr, and gap size h. The thermodynamic slip 
coefficient tl is greatly affected by E, Re,, h, the pre- 
scribed interFacial position (other than nominal), sur- 
face structure, and the Darcean flow direction and the 
results show that 0.1 < c( < 4. For the hydrodynamic 
no-slip boundary condition, the distributions of the 
variable effective viscosity and the variable per- 
meability cannot be readily generalized. For conduc- 
tion, the slip coefficient xT depends on E, k,ikr, and 
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for Pe, = IO2 and Pe, = 10’ (h = 1). (b) Effect of k,/kf on the distribution of D, (y)/ar for the fluid bounding 
medium with k,/kf = 1 and k,/kr = 50 (h = 2). (c) Effect of the gap size on the distribution of DL(y)/a, 

for/r= 1,2,3,4. 

0 

(4 

the normalized conductivity of the solid bounding 
medium k,Jkf and for the no-slip boundary condition 

the distributions of kel(y)/kf and k,,, (y)/k, cannot be 
readily generalized. The distribution of keL(y)/kf is 
most accurately modeled by the existing layered 
model. For convection, the results are summarized 
above and the importance of the proper modeling of 
k,,(y)/k, near the interface should be emphasized. We 
point out that an error in the transverse heat flux 
results if the local velocity distribution and a simple 

mixing length distribution are used to model the dis- 
tribution of Dd,(y)/q. 
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